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Background and Problem Statement

 NASA’s Earth Observing System (EOS) collects massive, distributed,
heterogeneous data “sets”.

 EOS data sets big and complex.
 Phenomena of interest at different spatial scales, but we don’t know what we

don’t know.

 How can we quantitatively characterize and compare large-scale structure
(i.e. Level 3) in time and space?
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 Assertion: empirical probability distributions derived from the data are signatures of
physical processes.

 Distributions defined on different space-time windows can be compared, and
differences or changes attributed to physical processes.

 Approach:

 partition data on coarse, spatio-temporal grid (monthly five-degree)

 summarize the data in each grid cell by a multivariate distribution estimate, i.e
the output of a clustering algorithm.

 use a well-defined “distance” between probability distributions as a basis for
data mining algorithms.

Background
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AIRS
Granules

45 footprints,
2250 km

30 footprints,
1500 km

Atmospheric Infrared Sounder (AIRS) Data
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AIRS Data

AIRS Variables:

Indices Field
1-11: atmospheric temperature at 11 altitudes
12-22: atmospheric humidity at 11 altitudes
13-32: cloud fraction at 10 altitudes (excludes lowest)
33: land fraction
34: granule type (ascending or descending)
35: quality flag

Challenge: Given 324,000 35-dimensional observations per day since May 2002,
how do we understand and characterize what the data tell us about the
atmosphere? (And yes, the result has to be small enough to fit on my computer!)

Approach: Translate the problem as one of quantitatively characterizing how
empirical distributions of coarse spatio-temporal subsets evolve over space and
time.
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Approach

! 

N
k

= 1[x " k]

n=1

N

#

! 

x
1

! 

x
2

! 

x
N 1

1
1

! 

yK

! 

y
1

! 

y
2

! 

N
1

! 

N
2

! 

N
K

! 

yk =
1

Nk

xn1[x " k]
n=1

N

#

! 

X

! 

Y = E(X |Y )

High-dimensional
 data space

(!)

AIRS Granules

  grid cell

135 footprints,
2250 km

90 footprints,
1500 km

  

! 

5
o
" 5

o



Earth-Sun Sy stem Technology  Conf erence, June 28-30, 2005 9

National Aeronautics and 
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Approach
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The best source
decoder is the mean
function.

How to find the best
source encoder?

The best channel
code is Huffman.



Earth-Sun Sy stem Technology  Conf erence, June 28-30, 2005 10

National Aeronautics and 
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

How to find the best source encoder
(clustering)?

Balance average number of bits to
transmit (entropy, h) against average
reconstruction error
(distortion/mean squared error,      ).

! 

h = " pk
k

# log2 pk = "E log2 p$(X )[ ]

! 

" =
1

N
xn # y$(xn )

n

%
2

= E X # q(X)
2

! 

L = " + #hChoose

! 

" to minimize

! 

"

(K fixed).

Approach



Earth-Sun Sy stem Technology  Conf erence, June 28-30, 2005 11

National Aeronautics and 
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

! 

L = " + #hChoose

! 

" to minimize (K = 5).

! 

" = 0

! 

" > 0

! 

"Choose

! 

" to equalize .

Approach



Earth-Sun Sy stem Technology  Conf erence, June 28-30, 2005 12

National Aeronautics and 
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Data Mining

Algorithm: Entropy-constrained Vector Quantization (ECVQ; Chou, Lookabaugh and
Gray, 1989; Braverman et al., 2003).

Result: A set of clusters and corresponding weights for each spatio-temporal grid cell.
Defines a set of discrete probability mass functions (PMF’s).

Statistical model:

Let
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High AIRS Retrieval Yields

Data Mining: An Example
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Data Mining: An Example
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Data Mining: An Example
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Data Mining: An Example
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Data Mining: An Example

Cluster Analysis of Grid Cells Multidimensional Scaling Plot

Similar &
proximate

Different &
proximate
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Similar & Proximate Clusters
(Cells 31 and 32, upper right region of interest)

First 12 clusters in each cell as anomalies from grid cell mean profiles
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Different & Proximate Clusters
(cells 1 and 3, lower left corner of region of interest)

as anomalies
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Conclusions

 The clustered data are a significant compression of raw data
 by a factor of 10 to 100

 Clusters embody distinct, realistic atmospheric states that can be
quantitatively compared.

 Sets of clusters constitute discrete probability distributions with a well-
defined measure of dissimilarity. Use to quantify relationships among
grid cells.

 Apply globally to find unknown relationships between grid cells or
combinations of grid cells.

 These objective ‘top-down’ measures complement traditional ‘bottom-up’
methods used in the atmospheric science.


